Numerous therapeutic avenues for FSHD

Himeda et al. (2015) Antiox Redox Signaling

Epigenetics

"Treasure your exceptions." Thomas Hunt Morgan

- Context-dependent sequence independent gene expression
- > Stable yet dynamic \rightarrow Cellular memory
- > Can be influenced by the environment (diet, aging, etc...)

FSHD genetics are complex

Himeda et al. (2014) Antiox Redox Signaling

FSHD is primarily an epigenetic disease

High variability within the clinical and genetic population → Presentation, progression, severity, asymmetry, extramuscular, and age of onset

All types of FSHD are linked to epigenetic status of 4q35 D4Z4

FSHD1: Dominant deletions at 4q35 D4Z4 array Apparently low penetrance <u>DNA Hypomethylation</u> of shortened 4q35

FSHD2: Dominant inactivating mutations in SMCHD1 --ATPase chromatin remodeling protein -- account for ~85% of FSHD2 → more mutations DNA Hypomethylation of 4q35 and 10q26 arrays

IFSHD: Infantile form of FSHD1 or FSHD2, much more severe <u>DNA Hypomethylation</u> of FSHD1 or 2

Epigenetic Gene and Genome Regulation

"The structural adaptation of chromosomal regions so as to register, signal or perpetuate altered activity states" - Adrian Bird

> Keys: DNA sequence independent Context dependent Stable/Heritable Cellular Memory Dynamic/reversible Responsive

Chromatin: DNA, histones, non-histone proteins, RNA

Epigenetics: Nurture (Environment) vs. Nature

Heritable changes in gene activity that do not involve alterations to the genetic code

Nature: Genetics

VS.

Passed on by Mom and Dad

Affected by:

- Mutagens
- Mistakes

Genetically identical

"Epialleles"

Nurture: Epigenetics

Passed on by Mom and Dad

Affected by:

- Stress
- Prenatal care
- Sleep
 - Environment
- Diet

Waterland and Jirtle (2003) MCB 23:5293

Genetically identical, epigenetically different

Epigenetic differences in genetically ~ equivalent people (i.e. identical twins) can have profound effects

Epigenetic differences can have profound long-term health consequences

Epialleles

 \rightarrow heritable?

Waterland and Jirtle, Mol Cell Biol, 2003

FSHD epigenetics dictate disease

Epigenetic Therapies

Disease	Epigenetic target	Approaches
FSHD	Euchromatic D4Z4 Chromatin structure	Small molecule inhibitors CRISPR/Cas9/dCas9
	<u>Heterochromatic structure</u>	
Rett Syndrome	Reactivation of silenced X chromosome	Small molecule inhibitors
Fragile X Syndrome Prader-Willi Syndrome	Reactivation of FMR1 gene	Small molecule inhibitors
Leukemia Cancer	Reactivation of tumor suppressors	Small molecule inhibitors
Duchenne MD Myotonic Dystrophy	Induction of compensatory genes	Small molecules
Emery-Driefuss MD	Nuclear architecture	???

Sciencexpress

Report

A Unifying Genetic Model for Facioscapulohumeral Muscular Dystrophy

Richard J. L. F. Lemmers,¹ Patrick J. van der Vliet,¹ Rinse Klooster,¹ Sabrina Sacconi,² Pilar Camaño,^{3,4} Johannes G. Dauwerse,¹ Lauren Snider,⁵ Kirsten R. Straasheijm,¹ Gert Jan van Ommen,¹ George W. Padberg,⁶ Daniel G. Miller,⁷ Stephen J. Tapscott,⁵ Rabi Tawil,⁸ Rune R. Frants,¹ Silvère M. van der Maarel¹*

Non-permissive

DUX4-fl expression is dependent upon the PAS and FSHD/healthy status

Therapeutic approaches to FSHD

Himeda et al. (2015) Antiox Redox Signaling

Epigenetic regulation is a therapeutic target for FSHD

Small molecule inhibitors

Therapeutic approaches to FSHD

Morpholinos/PMOs/shRNAs/miRNAs CRISPR/Cas9 CRISPRi/dCas9-KRAB Anti-inflammatory Myostatin inhibition

CRISPR-Cas9 and dCas9 in muscular dystrophy research and therapeutic development

Efficient genome targeting

Himeda et al. (2016) Trends Pharmacol.

Therapeutic delivery of CRISPR/Cas is challenging

Maeder and Gersbach (2016) Mol Ther 24:430