

University of Nevada, Reno School of Medicine Department of Pharmacology

### Emerging Treatment Strategies for FSHD Peter L. Jones, Ph.D. and Takako I. Jones, Ph.D. Co-Principal Investigators





University of Nevada, Reno School of Medicine Department of Pharmacology



#### **Disclosures:**

Peter Jones and Takako Jones are listed as inventors on US patent applications for epigenetic diagnosis of FSHD, epigenetic therapeutic targets and CRISPR therapy for FSHD.

Peter Jones is on the SAB for Fulcrum Therapeutics and receives financial compensation



#### Rare Diseases as a group are not so rare >90 Neuromuscular Diseases

**~30** muscular dystrophies: progressive weakness and degeneration of the skeletal muscles that control movement.

Muscular dystrophy: 9 classes of diseaseBMD (Becker)CMD (Congenital)DMD (Duchenne)DDM (Distal)EDMD (Emery-Dreifuss)FSHD (Facioscapulohumeral)LGMD (Limb-Girdle)MMD (Myotonic)OPMD (Oculopharyngeal)Facioscapulohumeral)

Aging can be considered a muscle disease

# **Big Picture Perspective**

For Strength, Independence & Life Research across the full spectrum of neuromuscular diseases leads to scientific and medical breakthroughs that accelerate treatments and cures. The power in this approach is that we can often apply learnings from one disease to progress in others to bring urgently-needed answers to affected patients and families.

# Jones Lab expertise is epigenetics and developmental biology



Since 2003, our focus has been on FSHD, which we now know is an epigenetic-based disease

### **Epigenetics "Treasure your exceptions."** Thomas Hunt Morgan



- > Non-Mendelian pattern of heritability
- Context-dependent sequence independent gene expression
- Can be influenced by the environment (diet, aging, etc...)

### **Epigenetic differences can have profound long-term health consequences**

#### **Epialleles**



Genetically identical Epigenetically different

Mottled

Waterland and Jirtle, Mol Cell Biol, 2003

Mottled

agout

*A<sup>IAP</sup>* allele, methylated



#### Brown, normal

*A<sup>IAP</sup>* allele, unmethylated



Yellow, obese, spontaneous tumors



# All types of FSHD are linked to epigenetic status of 4q35 D4Z4



T. Jones et al. 2015 Clinical Epigenetics

# FSHD Therapeutic Development in 2003

FSHD gene? Unknown

Pathogenic mechanism? Unknown

**Cellular models?** 

Not significant

**Animal models?** 

Non existent

Treatments:Steroids, myostatin inhibitionRationale:~work for DMD, so why not

# FSHD Therapeutic Development in 2017

FSHD gene?DUX4

Pathogenic mechanism?

**Epigenetic dysregulation Still many possibilities** 

**Cellular models?** 

Many

**Animal models?** 

Mice, Fly, Zebrafish

Treatments:Myostatin inhibition, immune suppressionRationale:FDA approved, basis in the biology

## FSHD in 2017 Many viable therapeutic approaches!



 $\rightarrow$  inactivate or destroy the DUX4-fl mRNA

→ Myostatin inhibition (Acceleron ACE-083 trial)

# FSHD in 2017 Many viable therapeutic approaches!

#### Jones Lab at UNRSOM



Small molecule epigenetic effectors
CRISPR/dCas9 silencing

# FSHD is an epigenetic disease

#### Can we therapeutically dial down DUX4 expression?



T Jones et al. 2015 Clinical Epigenetics

### **Epigenetic regulation at chrom 4q35 is distinct between healthy and FSHD**



Asymptomatic ( FSHD

### We have identified 3 strong candidates for targeted FSHD therapy

**Example: Epigenetic Regulator PT-2** 



**Design small molecule inhibitors to reverse the epigenetic state** 

# Targeted repression of key epigenetic regulators reduces pathogenic *DUX4* expression



Asymptomatic

**Epigenetic drugs are a viable therapeutic approach to FSHD** 

FSHD

# **FSHD** is gain-of-function

Can we therapeutically dial down DUX4 expression using CRISPR?



T Jones et al. 2015 Clinical Epigenetics

## **CRISPR-mediated "genome editing" Powerful, controversial, scary?**



#### Not the whole story

# **CRISPR is much more than** genome "editing"

**CRISPR/Cas technology is essentially a simple** and more efficient way to specifically target the genome of any organism



**Sequence-specific genome targeting** 

# CRISPR/dCas9 in FSHD therapeutic development

**Efficient genome targeting of a transcriptional repressor** 



Himeda *et al.* (2015) *Mol. Therapy* Himeda *et al.* (2016) *Trends Pharmacol.*  Mol Ther. 2016 Mar;24(3):527-35. doi: 10.1038/mt.2015.200. Epub 2015 Nov 3.

#### **CRISPR/dCas9-mediated Transcriptional Inhibition** Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses *DUX4-fl* in FSH Muscular Dystrophy

Charis L Himeda<sup>1</sup>, Takako I Jones<sup>1</sup> and Peter L Jones<sup>1,2</sup>

<sup>1</sup>The Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; <sup>2</sup>The Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA

### Proof-of-principle CRISPR "cure" for FSHD

| ons =                          | The Washington Post                                                                                              | BIOFLASH<br>UMass researchers achieve several 'firsts'                                                                                                                   |
|--------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How CRISPR could<br>dystrophy  | d lead to a cure for muscular<br>BOARD wath Mathines Discoveries Space Rutures Carring -                         | Nov 16, 2015, 11:31am EST<br>INDUSTRIES & TAGS Technology, Health Care, Biotech, Pharmaceuticals<br>How Controversial Gene Editing Could<br>Lead To Groundbreaking Cures |
| By Dominic Basulto November 19 |                                                                                                                  | This technology may change the way we think of some of the world's most challenging diseases.                                                                            |
|                                | CRISPR Technique Could 'Turn Off'<br>Muscular Dystrophy Gene, Study<br>Says<br>November 13, 2015 // 05:00 AM EST | Wran by<br>Millisa CRONN<br>Wran by                                                                                                                                      |
|                                |                                                                                                                  | Gregory Adams via Getty Images                                                                                                                                           |

original article

# Could CRISPR really become an FSHD therapeutic?





CRISPR

First CRISPR clinical trial gets green light from US panel

~

The technique's first test in people could begin as early as the end of the year.

Sara Reardon

NATURE | NEWS

22 June 2016



Three companies have had recent IPOs Other companies still privately held Projected market of \$5.5 billion by 2021 Patent\* is being contested: UC-Berkeley vs the Broad Institute\* New CRISPR and CRISPR-like systems being discovered

### Therapeutic delivery of CRISPR/Cas in vivo is challenging

#### FSHD is a skeletal muscle disease



#### Need an animal model $\rightarrow$ pathogenic gene is primate-specific

#### Inserted the human *DUX4* gene into the mouse genome to generate FSHD-like mice with a readily assayable phenotype

>1 min suspended



FLEx/+ (control)

>1 min suspended



### *FLEx/+, ACTA1 MCM* (no DUX4) <2 second suspended





FLEx/+, ACTA1 MCM (DUX4 induced)

# *In vivo* delivery of AAV9-dCas9-KRAB + AAV9-sgRNA leads to significant DUX4 knockdown



AAV9 delivery results in 30% decrease in TA muscle Enough to be therapeutic? Only need to dial back expression from affected to asymptomatic

#### Our recent increased understanding of FSHD pathogenic mechanisms has led to the development of numerous therapeutic approaches and tools



CRISPRi/dCas9-KRAB; CRISPR/Cas9; Myostatin inhibition Morpholinos/PMOs/shRNAs; miRNAs; Anti-inflammatory Small molecules targeting epigenetic regulators; more...

# The FSHD field will be translating discoveries to the clinic and the future is bright



**Steven Blier:** Concert pianist, Professor at Julliard, FSHD patient, and friend Kelli O'Hara: Tony award winning actress and advocate for FSHD



University of Nevada, Reno School of Medicine Department of Pharmacology



### Acknowledgements

Mick Hitchcock, PhD, Endowed Chair in Medical Biochemistry





Charis Himeda, PhD

Takako Jones, PhD



National Institute of Arthritis and Musculoskeletal and Skin Diseases







