FSHD Genetics: Everything You Want to Know (plus some more)

Miami FSHD Family Day Conference 2019

Stephanie Bivona, MS, CGC

February 23, 2019

What is a genetic counselor?

- Genetic counselors have a Master degree in human genetics and/or genetic counseling
- Trained to be a resource for both patients and doctors about genetic concepts
- We are involved in ordering genetic tests and disclosing these results

Genetics 101

Chromosome to Gene to Protein

FSHD

FSHD1 vs FSHD2

- The main difference is underlying genetic cause
- The symptoms of each are the same
- FSHD1 makes up 95% of FSHD cases

Basic Genetics of FSHD1

- Autosomal dominant
 - If an individual has the condition, they have a 50% chance of passing it on.

Basic Genetics of FSHD1

- Autosomal dominant
 - If an individual has the condition, they have a 50% chance of passing it on
 - 10-25% of cases are de novo
 - The affected individual is the first person in their family to have the contraction
 - This is one of the reasons why a person can have FSHD without a family history for the condition

Other reasons why FSHD might "skip" generations

- Variable expressivity
 - Not all individuals in the family will have the same symptoms of FSHD

- Possible incomplete penetrance
 - A small percentage of people who have the genetic mutation for FSHD do not ever show signs of FSHD
- FSHD2
 - We will get to this later.

What actually causes FSHD?

- The expression (presence) of the DUX4 protein
 - This protein should NOT be present in our skeletal muscles
- The D4Z4 region helps prevent DUX4 when it is "methylated"
 - FSHD is due to a hypomethylation of the D4Z4 region

DUX4=TOXIC

The normal D4Z4 region-No FSHD

Adapted from Fig 2. Lek et al., 2015, Trends in Molec. Med.

FSHD1 mechanism

- Contraction of the D4Z4 region
 Under 11 repeats
- Hypomethylation of the D4Z4 region
- "Permissive allele"
 - 4qA
 - Allows for DUX4 to remain stable

FSHD1 Mechanism

Adapted from Fig 2. Lek et al., 2015, Trends in Molec. Med.

D4Z4 contractions without FSHD

TRENDS in Molecular Medicine

Adapted from Fig 2. Lek et al., 2015, Trends in Molec. Med.

Back before FSHD2 things were so easy...

https://www.smu.edu.sg/

Why is FSHD2 so complicated?

Digenic inheritance!

What is digenic inheritance?

- When two different genes or genetic components are needed in order to have a genetic condition
- In the case of FSHD2 the two components needed for hypomethylation of D4Z4:
 - A mutation in the SMCHD1 gene
 - A "permissive" D4Z4 allele

FSHD2 Mechanism

- Permissive allele
 - 4qA
 - Only one is needed
- Mutation in the SMCHD1 gene
 - Only 1 copy of the gene needs a mutation

FSHD2 mechanism

Adapted from Fig 2. Lek et al., 2015, Trends in Molec. Med.

Who else in the family is at risk?

- FSHD1
 - First degree relatives have a 50% chance
- FSHD2
 - 50% chance the SMCHD1 mutation will be passed on
 - Multiply this by the chance that 4qA permissive allele will be passed on

Who is at risk for FSHD1?

50%

Who is at risk for FSHD1?

Who is at risk for FSHD1?

Now what are the risks for FSHD1?

50%

What chance do her kids have for FSHD2?

3/4 (75%) chance child will get permissive allele

In this scenario

1/2 x 3/4 = 3/8 chance child will have FSHD

1/2 (50%) chance child will get permissive allele

In this scenario

1/2 x 1/2 = 1/4 chance child will have FSHD

Family planning options for FSHD

- Conceive naturally
 - No testing
- Conceive naturally
 - Test the fetus for FSHD
 - Amnio and CVS
- In vitro fertilization with preimplantation genetic testing
- Adoption, sperm/egg donation, etc.

IVF with Preimplantation Genetic Testing- FSHD1

- Go through the IVF procedure
- Once embryos are obtained they are tested for FSHD contraction
 - Lab may ask for samples from additional family members
- Those embryos that test negative for FSHD are implanted
- Cons
 - Cost
 - No guarantee

https://www.iasoivf.com

IVF with Preimplantation Genetic Testing- FSHD2

- Go through the IVF procedure
- Once embryos are obtained they are tested for SMCHD1 mutation
 - Lab may ask for samples from additional family members
- Those embryos that test negative for SMCHD1 are implanted
- Cons
 - Cost
 - No guarantee

How can I or someone else be tested for FSHD?

- www.nsgc.org/findageneticcounselor
- Consult a neurologist

FIND A GENETIC COUNSELOR

A searchable directory of genetic counselors

Thank you!

Stephanie Bivona, MS, CGC Phone: (305) 243-9461 Email: sbivona@med.miami.edu

