A Consensus Model for FSHD Identifies Opportunities for Therapy

Stephen J. Tapscott, MD, PhD
Fred Hutchinson Cancer Research Center
Seattle, WA
Light = Genes On
Euchromatin

Dark = Genes Off
Heterochromatin
Light = Genes On
Out in the living room

Dark = Genes Off
Stored in the attic
Stem Cell Genes
- On, Living Room

Stem Cell Genes
- Off, Attic
Stem Cell Genes - On, Living Room

DNA Methylation & Heterochromatin
Lock the Attic Door

Stem Cell Genes - Off, Attic

Stem Cell

Differentiated Cell
DUX4 is abundantly expressed in healthy human testis

Snider, Geng et al. PLoS Genet, 2010

Brown = DUX4 immunodection
Fewer D4Z4 repeats have less repressive heterochromatin

11-100 D4Z4 repeat units: heterochromatin

1-10 D4Z4 repeat units: less heterochromatic

= heterochromatin (H3K9me3, H3K27me3, meCpG)

= less heterochromatic (H3K4me3, less meCpG)
Variegated endogenous DUX4 expression in FSHD muscle cells
A Developmental Model of FSHD

• DUX4 is expressed in the testis germ-line
 – Possible role in stem cell biology
• DUX4 is repressed (moved to the attic) in muscle
 – Repeat-mediated silencing
• Inefficient repression causes FSHD
 – Fewer repeats = less efficient repression
 – Faulty lock (e.g., SMCHD1 in FSHD2)
• Results in occasional bursts of DUX4 in muscle
DUX4 is a transcription factor

- **DUX4 can “turn-on” other genes**
 - When DUX4 comes out of the attic it brings a lot of genes with it!

- **Turns on germline genes in skeletal muscle**
 - Tells the muscle to become a germline cell
Candidate Mechanisms for FSHD

• Activation of a germline program muscle cells
 – Confusion causes death and dysfunction

• Immune response to germline proteins
 – FSHD cells express Cancer Testis Antigens
Candidate Mechanisms for FSHD

• Activation of a germline program muscle cells
 – Confusion causes death and dysfunction
• Immune response to germline proteins
 – FSHD cells express Cancer Testis Antigens
Candidate Mechanisms for FSHD

- Activation of a germline program muscle cells
 - Confusion causes death and dysfunction
- Immune response to germline proteins
 - FSHD cells express Cancer Testis Antigens
Candidate Mechanisms for FSHD

• Activation of a germline program muscle cells
 – Confusion causes death and dysfunction
• Immune response to germline proteins
 – FSHD cells express Cancer Testis Antigens
• DUX4 genes can suppress muscle repair
 – Defensin protein blocks new muscle formation
Candidate Mechanisms for FSHD

• Activation of a germline program muscle cells
 – Confusion causes death and dysfunction

• Immune response to germline proteins
 – FSHD cells express Cancer Testis Antigens

• DUX4 genes can suppress muscle repair
 – Defensin protein blocks new muscle formation
Candidate Mechanisms for FSHD

- **Activation of a germline program muscle cells**
 - Confusion causes death and dysfunction
- **Immune response to germline proteins**
 - FSHD cells express Cancer Testis Antigens
- **DUX4 genes can suppress muscle repair**
 - Defensin protein blocks new muscle formation
Candidate Mechanisms for FSHD

- Activation of a germline program muscle cells
 - Confusion causes death and dysfunction
- Immune response to germline proteins
 - FSHD cells express Cancer Testis Antigens
- DUX4 genes can suppress muscle repair
 - Defensin protein blocks new muscle formation
- DUX4 re-activates virus-like elements in the genome
Candidate Mechanisms for FSHD

- Activation of a germline program muscle cells
 - Confusion causes death and dysfunction
- Immune response to germline proteins
 - FSHD cells express Cancer Testis Antigens
- DUX4 genes can suppress muscle repair
 - Defensin protein blocks new muscle formation
- DUX4 re-activates virus-like elements in the genome
- And more ….
Therapeutic Opportunities

• Suppress DUX4 mRNA expression
 – General enhancement of chromatin repression
 – Targeted enhancement of D4Z4 chromatin repression
Therapeutic Opportunities

• Suppress DUX4 mRNA expression
 – General enhancement of chromatin repression
 – Targeted enhancement of D4Z4 chromatin repression

• Decrease DUX4 mRNA stability/translation/splicing/pA
 – sh-, si-, mi, or mo-RNA; small molecule inhibitors
Therapeutic Opportunities

- **Suppress DUX4 mRNA expression**
 - General enhancement of chromatin repression
 - Targeted enhancement of D4Z4 chromatin repression

- **Decrease DUX4 mRNA stability/translation/splicing/pA**
 - sh-, si-, mi, or mo-RNA; small molecule inhibitors

- **Block DUX4 protein activity**
 - Target protein interactions
Therapeutic Opportunities

• Suppress DUX4 mRNA expression
 – General enhancement of chromatin repression
 – Targeted enhancement of D4Z4 chromatin repression

• Decrease DUX4 mRNA stability/translation/splicing/pA
 – sh-, si-, mi, or mo-RNA; small molecule inhibitors

• Block DUX4 protein activity
 – Target protein interactions

• Interfere with pathological mechanism(s)
 – Multiple candidate mechanisms downstream of DUX4
 – Which one(s) contribute most to disease?
Therapeutic Opportunities

• Supress DUX4 mRNA expression
 – General enhancement of chromatin repression
 – Targeted enhancement of D4Z4 chromatin repression

• Decrease DUX4 mRNA stability/translation/splicing/pA
 – sh-, si-, mi, or mo-RNA; small molecule inhibitors

• Block DUX4 protein activity
 – Target protein interactions

• Interfere with pathological mechanism(s)
 – Multiple candidate mechanisms downstream of DUX4
 – Which one(s) contribute most to disease?
Preclinical Models

• Cultured FSHD muscle cells
Preclinical Models

- Cultured FSHD muscle cells

Variegated endogenous DUX4 expression in FSHD muscle cells

Snider et al, PLoS Genet 2010; Geng et al, Dev Cell 2012
Preclinical Models

- Cultured FSHD muscle cells
- Mouse with human DUX4 genomic region

Krom et al, PLoS Genet 2013
Preclinical Models

• Cultured FSHD muscle cells
• Mouse with human DUX4 genomic region
• Mouse with DUX4 expression
Preclinical Models

- Cultured FSHD muscle cells
- Mouse with human DUX4 genomic region
- Mouse with DUX4 expression
- Human-to-mouse muscle transplants

Parker et al Skeletal Muscle 2012
Parker et al Stem Cells 2012
Preclinical Models

- Cultured FSHD muscle cells
- Mouse with human DUX4 genomic region
- Mouse with DUX4 expression
- Human-to-mouse muscle transplants
- Human DUX4 expressed in zebrafish

Snider et al, Hum Molec Genet 2009
Preclinical Models

- Cultured FSHD muscle cells
- Mouse with human DUX4 genomic region
- Mouse with DUX4 expression
- Human-to-mouse muscle transplants
- Human DUX4 expressed in zebrafish
- Model organisms
Identifying Candidate Therapies

• Screen existing chemical compounds
 – FDA approved compounds
 – Clinical candidate compounds
 – Screen large chemical libraries
Identifying Candidate Therapies

• Screen existing chemical compounds
 – FDA approved compounds
 – Clinical candidate compounds
 – Screen large chemical libraries

• Rational development of new drugs
 – Targeting a specific protein/RNA
Identifying Candidate Therapies

• Screen existing chemical compounds
 – FDA approved compounds
 – Clinical candidate compounds
 – Screen large chemical libraries

• Rational development of new drugs
 – Targeting a specific protein/RNA

• Lifestyle, diet, exercise
Milestones for Success

• Halt or reverse disease progression
 – Slowly progressive disease
 • Requires long-term study
 • Large numbers of participants
 – Natural history studies and FSHD registries
Milestones for Success

• Halt or reverse disease progression
 – Slowly progressive disease
 • Requires long-term study
 • Large numbers of participants
 – Natural history studies and FSHD registries

• Demonstration of drug activity
 – DUX4 mRNA or regulated genes
Milestones for Success

• Halt or reverse disease progression
 – Slowly progressive disease
 • Requires long-term study
 • Large numbers of participants
 – Natural history studies and FSHD registries

• Demonstration of drug activity
 – DUX4 mRNA or regulated genes

• Biological response
 – MRI or serum markers of muscle damage
Milestones for Success

- Halt or reverse disease progression
 - Slowly progressive disease
- Requires long-term study
- Large numbers of participants
 - Natural history studies and FSHD registries
- Demonstration of drug activity
 - DUX4 mRNA or regulated genes
- Demonstration of biological response
 - MRI or serum markers of muscle damage

Small numbers of participants
Short-term studies

Prioritize candidate therapies
Milestones for Success

• Halt or reverse disease progression
 – Slowly progressive disease
 • Requires long-term study
 • Large numbers of participants
 – Natural history studies and FSHD registries

Large numbers of participants
Long-term studies

Outcome studies for FDA approval
How long will it take?

• Within a few years if ... ?
 – FDA approved drug
 – Repurposed drug candidate
How long will it take?

• Within a few years if ... ?
 – FDA approved drug
 – Repurposed drug candidate

• Within a decade if ... ?
 – New drug development
 – Progressively more effective drugs
When will we start?

• We have, thanks to you!
 – Consensus model of disease
 – Candidate biomarkers
 – Clinical natural history studies
 – Multiple efforts at drug development

Tawil et al, Skeletal Muscle 2014
And thanks to the groups providing funding and inspiration:

- friends of FSH research
- Geraldi Norton Foundation & the Eklund Family
- George & Jack Shaw & the Shaw Family Foundation
- National Institutes of Health
- Muscular Dystrophy Association
- SEVENTH FRAMEWORK PROGRAMME
- Prinses Beatrix Fonds VOOR SPIERZIEKTEN
- FSH Society
- STICHTING FSHD