Testimony of Daniel Paul Perez, Co-Founder & Director Emeritus FSHD Society before U.S. House Appropriations Subcommittee on Labor, HHS, Education and Related Agencies May 26, 2022

Honorable Chairwoman DeLauro, Ranking Member Cole, and distinguished members of the Subcommittee, thank you. We are requesting the FY2023 appropriation of an amount of $30 million for the agency U.S. DHHS National Institutes of Health (NIH) to sustain and increase its ‘dedicated’ research program on facioscapulohumeral muscular dystrophy (hereafter called FSHD).

Madam Chairman, this is my sixty-fourth (64th) testimony before the U.S. Congress’ Appropriations Subcommittee on this matter. I have been professionally engaged in FSHD research since 1987, with a focus on funding research on the fundamental pathophysiology, molecular biology and genetics of the disease. I am co-founder, Director emeritus, past -Chairman, -President & CEO, and -CSO of FSHD Society, and have been involved in the evolution and design of FSHD research, gene mapping and genetics more or less from its inception to the present. My work and the FSHD Society’s funding spans nearly every research lab working on FSHD, the tactical and strategic planning that have led to understanding how FSHD1 and FSHD2,3 work, the advancement of the Muscular Dystrophy Community Assistance, Research and Education Amendments of 2001 (MD-CARE Act, Public Law 107-84), advocacy and policy, and the relationship of the scientific community to the societal context in which FSHD is embedded.

I am approaching near thirty (30) years of testifying as a patient with FSHD for Appropriation of funding for FSHD. I have had this disease for twice that time. That is a long time to live with a disease of this burden. I have now seen, experienced the entire effects, and borne almost the full brunt of what FSHD can do to you. FSHD is a heritable disease and one of the most common neuromuscular disorders with a prevalence of 1:8,0004 It affects 934,000 children and adults of both sexes worldwide. FSHD is characterized by progressive loss of skeletal muscle strength that is asymmetric in pattern and widely variable. Muscle weakness typically starts at the face, shoulder...
girdle and upper arms, often progressing to the legs, torso and other muscles. In addition to affecting any skeletal muscle, it can bring with it respiratory failure and breathing issues5,7, mild-profound hearing loss8, eye problems and cardiac bundle blockage and arrhythmias9,10. FSHD causes significant disability and death according the U.S. Centers for Disease Control and Prevention (CDC), National Center on Birth Defects and Developmental Disabilities, Atlanta, and others.11,12

The NIH is currently the principal worldwide source of funding of biomedical research on FSHD. Currently annual funding dedicated for FSHD listed in NIH RCDC is $10 million. Given the remarkable advances and momentum in FSHD research in the past eight years; it is appalling that FSHD funding has not grown according to NIH RCDC. This indicates a mismatch between NIH funding mechanisms and the external community working on FSHD.

Figure 1. FSHD Research Dollars (millions) & FSHD Percentage of Total NIH Muscular Dystrophy Funding

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All MD ($ millions)</td>
<td>$86</td>
<td>$75</td>
<td>$75</td>
<td>$76</td>
<td>$78</td>
<td>$77</td>
<td>$79</td>
<td>$81</td>
<td>$81</td>
<td>$83</td>
<td>$85</td>
<td>$97</td>
<td>$102</td>
</tr>
<tr>
<td>FSHD ($ millions)</td>
<td>$6</td>
<td>$6</td>
<td>$5</td>
<td>$5</td>
<td>$7</td>
<td>$8</td>
<td>$9</td>
<td>$11</td>
<td>$11</td>
<td>$10</td>
<td>$9</td>
<td>$9</td>
<td>$10</td>
</tr>
<tr>
<td>FSHD (% total MD)</td>
<td>7%</td>
<td>8%</td>
<td>7%</td>
<td>7%</td>
<td>9%</td>
<td>10%</td>
<td>11%</td>
<td>14%</td>
<td>14%</td>
<td>12%</td>
<td>9%</td>
<td>9%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Currently active projects listed in NIH RePORT as being applicable to FSHD are $17.507 million FY2022 (04May) (source: NIH Research Portfolio Online Reporting Tools (RePORT) ‘FSHD or facioscapulohumeral or landouzy-dejerine’). This includes dedicated funds in NIH RCDC.

In my role, I provide initiator and seed funding to bring new ideas and researchers online and am asked to evaluate and compare the various research projects we have funded and understand their commonalities and differences. I have, if I had to estimate, made a fairly extensive study of six hundred FSHD projects and proposals. My effort to solve FSHD has been persistent in yielding refined advances, it is novel and original, and is clearly driven by an overall sense of goals and concepts that are meaningful to patients and their families. The research we’ve started is forward-looking, as illustrated by the number of industry and philanthropic partners/researchers that have picked up on this seminal work and contributed to it.
FSHD is associated with epigenetic changes on the tip of human chromosome 4q35 in the D4Z4 DNA macrosatellite repeat array region leading to an inappropriate gain of expression (function) of the D4Z4-embedded double homeobox 4 (DUX4) gene. DUX4 is a transcription factor that kick starts the embryonic genome during the 2- to 8-cell stage of development. Ectopic expression of DUX4 in skeletal muscle is associated with the disease and the disease’s pathophysiology that leads to muscle death. DUX4 is never expressed in ‘healthy’ muscle. FSHD has had few clinical trials, and currently there is no cure or therapeutic option available to patients. DUX4 requires and needs to activate its direct transcriptional targets for DUX4-induced gene aberration and muscle toxicity. The genetics of FSHD are so remarkable, that NIH Director Dr. Francis Collins said on the front page of the New York Times, “If we were thinking of a collection of the genome’s greatest hits, this [FSHD] would go on the list.” Add to this that FSHD was the sole disease mentioned in the recent tour de force Science publication "The complete sequence of a human genome." FSHD was highlighted as having a bunch of newly assembled paralogs in the assembly; some of which showed evidence of being transcriptionally active. Great exposure for FSHD!

Blocking DUX4’s DNA, DUX4’s RNA or DUX4’s protein ability to activate its targets has profound therapeutic relevance. The scientific community has in recent years pioneered inroads to treating FSHD using the enormous potential of genomic sequencing, genomic medicine, gene editing and next generation diagnostics. All with the central paradigm of the reduction of: DUX4, DUX4 expression, DUX4 protein activity, or the effects of DUX4-mediated toxicity. Strategies include modulating DUX4 repressive pathways, targeting DUX4 mRNA, DUX4 protein, or cellular downstream effects of DUX4 expression. Our FY2022 testimony on FSHD was very comprehensive in scope with a call to action in research areas from bench-side to clinic. Rather than restating – we ask the Committee to urge NIH to move forward on the many priorities listed.
In FY2023, we/I additionally request NIH to make an immediate and targeted push to answer the following three questions. Answers to these questions will help remove the obstacles to measuring disease progression, help measure if novel therapeutics are making a difference in stopping the disease and elucidate if muscle can grow again and be restored.

Figure 2. **Three Key Research Questions**

How does DUX4 expression lead to pathophysiology? We know a lot of what can happen when DUX4 is expressed in a cell (mostly forced experimental expression), but not a lot about what happens when an FSHD muscle cell expresses DUX4 that leads to pathology.

Can FSHD muscle pathology be reversed once DUX4 expression starts the pathogenic cascade in a particular muscle? This is a key question when looking to improve outcomes with either muscle building or DUX4 halting therapies.

Is there a systemic effect of local DUX4 expression that leads to amplification of muscle decline, either immune or some extracellular signaling? Answering this question will help delineate where along the travels of DUX4 from its birth and death in muscle we can intercept and control the disease process.

New data/information generated on the basic mechanism of DUX4 and how it causes muscle disease has the potential to focus the design of future clinical trials on muscles and measurements that will increase the rigor of the design and decrease the number of individuals necessary for initial tests of drug activity. It is absolutely necessary to increase our resolution, clarity and understanding of what DUX4 is and what it does to muscle in FSHD. The gains in this area will effectively unpin or untether FSHD from the difficulty category of “slowly progressing neuromuscular diseases remaining recalcitrant” to timely ascertainment that a clinical intervention can work.

We request for FY2023, increasing NIH FSHD research funding/appropriation of the standard portfolio to $25 million. The growth has been slow, continuous and prone to year-to-year up/down fluctuations according to NIH. Additionally, we request a one-time boost of $5 million to solicit applications to answer the three questions of key import. FSHD needs an infusion of NIH grants both submitted and funded. NIH needs to add exploratory / developmental research grants (parent R21) and research project grants (parent R01). This is NIH’s wheelhouse and forte without a doubt.

Madam Chairman, thank you for this opportunity to update you on FSHD with this testimony.